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Analysis of elastic fibre bridging in the multiple 
cracked composite 
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VTT (Technical Research Centre of Finland), Building Technology, P.O. Box 1807, FIN-02044 
VTT, Finland 

A fibre pull-out problem in the multiple cracking stage is studied. Full bonding is assumed. 
When studying a single fibre the equilibrium condition may be violated at either of the 
cracks. Therefore to satisfy equilibrium a two-fibre system is assumed. Different cases were 
analysed and compared with the single fibre system. Also analysed was a case in which the 
two fibres partially overlap between two cracks; two examples are presented. 

1. Introduction 
In fibre-reinforced brittle matrix composites, the fibres 
are effective primarily in the post-cracking case. 
Under tension the composite may fail either in a single 
fracture mode, or after reaching a multiple cracking 
stage. The cracking mode depends on whether the 
fibres at the crack can sustain the total load needed for 
crack formation. In the multiple cracking stage the 
matrix is divided into segments of similar lengths. The 
matrix is stress-free at the edges of the cracks, and the 
load is carried by the fibres bridging the cracks. The 
stress-transferring mechanism from the fibres to the 
matrix has a considerable influence on crack spacing 
and width. 

While in brittle matrix composites with continuous 
fibres pseudostrain-hardening occurs due to multiple 
cracking, composites with randomly oriented discon- 
tinuous fibres generally fail in a tension-softening 
mode upon the initiation of the first crack. However, it 
has been shown (e.g. Naaman and Shah [1], 
Tjiptobroto and Hansen [2-1) that the multiple 
cracking stage can be achieved even with short fibres if 
the fibre volume content is sufficiently high. 
Moreover, Li and Leung [3] have presented analytical 
conditions for multiple cracking of a discontinuous 
random-fibre composite using a fracture mechanics 
approach. 

The analytical treatment of the fibre bridging the 
crack in the multiple cracking stage differs somewhat 
from the theory of the pull-out test. In the pull-out test 
the boundary conditions are: at the fibre loaded end 
the fibre force is the same as the external load; at the 
embedded end the tensile stress in the fibre is usually 
assumed to be zero. In the multiple cracking case, the 
fibre may extend over two or more cracks if the crack 
spacing is sufficiently low. Because the matrix stress is 
zero at the crack, the shear stress between the fibre 
and the matrix is not continuous across the crack. 
Therefore the boundary conditions must be stated for 
the segment between the cracks. 

In the case of continuous fibres, it can be assumed 
that the fibre force is equal to that at the adjacent 
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crack. With short fibres the fibre's shorter embedded 
length at the crack may be too 16w to carry the load 
equal to that at the adjacent crack. Thus the fibre 
forces at the two cracks are not in balance. This is why 
when only a single fibre is studied the equilibrium 
condition may be violated. 

It can be assumed that at the adjacent crack is 
another fibre located symmetrically with respect to the 
fibre being analysed [4]. The fibre force transfers from 
the fibre to the matrix and further to the other fibre. 
Then the forces in the two-fibre system at the cracks 
satisfy the equilibrium condition. The moment 
equilibrium condition can be assumed to be fulfilled 
statistically around the fibre. 

With a single fibre the analysis leads to a second 
order differential equation for the fibre force with two 
boundary conditions [5]. With a two-fibre system it 
leads to a fourth order differential equation with four 
boundary conditions, as shown later. 

The ACK model by Aveston and colleagues [6] 
assumed a uniform frictional shear stress between the 
continuous fibres and the matrix. Kullaa [4] used the 
same assumption in a statistical model of multiple 
cracking of a discontinuous fibre composite. In the 
present analysis full bonding between fibre and matrix 
is assumed. The main assumption needed for 
development of the model is the relationship between 
the interface shear stress and the local relative 
displacement between the fibre and the matrix. In the 
models by Naaman et  al. [5], Nammur and Naaman 
ET], and Lim et  al. [83, a linear relationship was chosen 
in the full bonded case. Stang et al. [9] modelled the 
matrix as a shear lag with a linear shear stiffness on 
a rigid support. An axially symmetric shear-lag model 
also leads to a linear relationship between the shear 
stress and the fibre and matrix relative displacement 
(Aveston and Kelly [10], Budiansky et aI. [11], Leung 
and Li [12], and Li and Chan [13]). The present model 
follows the theory by Naaman et al. [5], and the 
relationship between the interface shear stress and the 
relative displacement between the fibre and the matrix 
is proposed to be linear. 
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With the model described below, the distributions 
of fibre and matrix stress, the interracial shear 
stress, the strain difference between fibre and matrix, 
and the fibre relative displacement at the crack can be 
derived. 

2. Single  f ibre 
If a single fibre is analysed separately in the multiple 
cracking stage, some of the boundary conditions may 
be violated. It is usually assumed that when multiple 
cracking occurs, the crack widths are mutually equal. 
From the crack widths the unknown forces in the 
fibres at the crack can be obtained, at least by 
iteration. Once the fibre forces at the cracks are 
known, the composite stress can be evaluated. 

Let the forces in the fibres at the cracks be known 
(Fig. 1). Following the pull-out theory by Naaman 
et al. [-5] this leads to a second order differential 
equation for the fibre tensile force F 

d 2 f ( x )  
- KP1 + KQF(x) (1) 

dx 2 

where P, = fibre force at the crack 

q/K 
K - (2) 

AmEm 

AmEm 
+ - -  (3) 

ArEf 

where ~c = bond modulus, ~ = perimeter of fibre, 
Af = cross-sectional area of fibre, Am = area of 
matrix, Ef = modulus of elasticity of fibre and 
E m = modulus of elasticity of matrix. 
The bond modulus rc is defined by 

z = KS (4) 

where z is the shear stress and S the relative 
displacement between the fibre and the matrix. 

The matrix area is obtained from 

Am Af 
- (5) 

Vm Vf 

where Vr and Vm are the volume contents of the fibres 
and the matrix, respectively. 

The solution to Equation 1 is of the form 

F = P l ( A e ~ ' X + B e - ~ x + Q )  (6) 

where 

Q = 1 

X = (KQ) a/z (7) 

The unknown coefficients can be determined from the 
following boundary conditions 

F(O) = P2 (8) 

F(l) = P1 (9) 

ql P2 P1 I,, 

where P, and P2 are the fibre forces at the adjacent 
cracks and 1 is the segment length. This leads to 

1E( ) 
A - 1 - e -2at 1 - e -xl 

(10) 

( ;  P ~ ) I  (11) 

If P2 is zero, the analysis is identical to that by 
Naaman et al. [-5]. The shear stress between the fibre 
and the matrix is (according to [--5]): 

1 dF 
- (12) 

dx 

and the local strain difference between the fibre and 
the matrix is: 

1 dZF 
gf  - -  ern - -  q/K dx 2 ( 1 3 )  

The relative fibre displacement at the crack can be 
derived using Equations 4 and 12: 

A - "c(l) 1 dF x=l P1)v 
K - ~ : d x  - t)~ (Ae~a - Be-~l) 

(14) 

It should be noted that in general one of the boundary 
conditions is violated at the crack where the fibre force 
is P2. According to the previous analysis, the force in 
the matrix at the crack becomes Pt - P2, and not zero 
as it should be. In the following section a two-fibre 
system is introduced that satisfies all the boundary 
conditions. 

3. Two- f ibre  system 
Let us study two adjacent fibres that are 
symmetrically located so that the total force balance is 
satisfied at the crack (Fig. 2). 

The equilibrium condition of the composite 
cross-section is 

P = F~ q- F 2 q- T1 + T2 

= (AfEfaf)l + (AfEfaf)2 + (AmEmam)t 

q- (AmEm gin) 2 (15) 

= AfEf(gfl  q- gf2) -~- AmEm (~ml -}- F~m2) 

where P = P1 + Pz, Fi and Ti are the tensile forces in 
the fibre and the matrix, respectively, and the 
subscripts refer to either of the fibres and its 

P~ 
q 

P~ 

P1 

Figure 1 Single fibre. 
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Figure 2 Two-fibre system. 



surrounding matrix. The last equality in Equation 15 
holds if the fibres are of the same type. 

Let 8m be defined as the average of the matrix strain 
around the two fibres 

1 
gm = ~ (gml ~- gin2) (16)  

From Equations 15 and 16 it follows that 

P AfEf  
AmE -(eflm + ef2) (17) 

The unknown coefficients are determined from the 
following boundary conditions (see Fig. 2) 

FI(0) = P1 (28) 

= P2 (29) 

= P2 (30) 

= P~ (31) 

and 27, Equations 28-31 can be 

Fl(l) 

F~(O) 

F2(I) 

Using Equations 24 
written in matrix form 2~ m = A m E m -  

The local strain difference between the first fibre and F 11 1 1 1 ] { A  } 
the matrix is . e-)~ z e ~*~ e -~=~ e ~=~ B 

- - 1  1 1 C 

2mLm 1 F(2AmEm ) L \ & L ~  1 [- e-a*/ - exit e-X~/ ea2/ 
- a - A ~  / ~  @ 1 E l -  P @ F2 D Efl - -  gm 

(18) 
Combining Equations 13 and 18, a second Order 
differential equation for F1 can be written 

d2Fl(X) - - K P  + R~OFt(x) + /(F2(x) (19) 
dx 2 

where 

R - ~)K (20) 
2AmEm 

and 

2AmEm 
(~ = 1 + -  (21) 

AfEf  

A similar second order differential equation for F2 is 
derived correspondingly 

d2Fa(x) - /s + /s + RFI(x )  (22) 
dx 2 

I 
P~ - P/(O + 1)] 

^ 
P2 - P/(Q + 1) 

= P2 -- P/(O + 1) 

P, - P/(Q + 1) 

Replacing F2 in Equation 22 by its value extracted 
from Equation 19 gives 

d4F1 2/s d2F1 (x) 
dx 4 dx ~ -}- ( 0  2 - -  1)/~2FI(X ) 

= R2(Q - 1) P (23) 

Equation 23 is a fourth order differential equation for 
Ft. The solution to this differential equation is of the 
form 

Fl(x) = Ae -~*x + Be ~*~ + Ce - ) ~  + De ~x 

P 
+ ^ (24) 

Q + I  

where 
)~, = E(K( (~-  1)] */2 (25) 

)v2 = [(K((~ + 1)] ~/2 (26) 

It can be shown that )v 2 is the same as )v in Equation 7. 
F2 can be obtained from Equation 19 as 

F2(X ) -- Ae-a,= _ Be~,= + Ce -~,2x + De ~ 

P 
+ ^ (27) 

( 2 + 1  

(32) 

The unknown coefficients are solved from Equation 32 

P1 - P2 
A - 2(1 - e -x'l) (33) 

- PI + P2 
B = 2ea,~( 1 _ e_~,~) (34) 

c = C0 - 1 ) ( P ,  + P2) (35) 
2(1 + e -~2')({2 + 1) 

(0 - 1)(el + P2) 
D = 2e~2,( 1 + e_a2,)((~ + 1) (361 

The relative fibre displacement at the crack is: 

1 dF2 1 
A - qt~: dx x = l -  ~t~: 

x(21Ae ~,l _ )~lBe~,Z _ L2Ce-),2l + )~2De)~g) 

(37) 

3.1 Fibres shorter than the segment  
between cracks 

If the fibre does not extend over the adjacent crack but 
the embedded end lies within the segment between 
two cracks (Fig. 3(a)), the boundary conditions differ 
from the previous analysis. As can be seen in Fig. 3(a), 
there are four fibres instead of two, as statistically the 
fibre volume content must be the same throughout the 
composite. In Fig. 3 the lower fibres are symmetrical 
to the upper fibres. 

The analysis can be divided into three steps by 
superposition (Fig. 3(b)). The first two steps can be 
analysed separately with a single fibre analysis, since 
the boundary conditions are satisfied. The third step is 
analysed below. It should be noted that the super- 
position is not strictly valid and does not lead to 
exactly the same results as without superposition. This 
is due to the fact that the first two cases in Fig. 3(b) are 
not mutually independent but would instead have 
some interaction. 

63 



& 
l 

(b) 

P~ 
4 

-I- 

I 

~D 

the matrix must be continuous, as it has been assumed 
that the relative displacement between the fibre and 
the matrix is proport ional  to the shear stress and must 
therefore be continuous. 

The unknown coefficients can be determined 
from the following simultaneous equations written in 
matrix form 

1 

_ e -2a  

e -~a  

0 

0 

0 

1 0 0 0 0 

__ e ~a e-Xta  es e-LZa eL2a 

_ ~e z~ _ )~le-~,, XaeX~ ~ _ )~2e-)~, )22 e)~za 
0 e -~'~ e ~ 0 0 

0 e -Ma  e )~la - -  c -;vza - -  e )'2a 

0 0 0 - -~ ,2  e-;v2s )v2 exza 

4 

4 

Figure3  The two fibres partially overlap within the segment 
b e t w e e n  two cracks. The analysis is divided into three steps by the 
superposition method. 

In the first region (0 ~< x ~< a) there is only one 
load-carrying fibre, and the corresponding matrix 
area is twice as large as normal. The fibre force can be 
obtained with a single fibre analysis replacing the 
matrix area Am by 2Am. In the middle of the segment 
(a ~< x ~< l), the analysis of a two-fibre system is 
performed. Let Ft and F2 be the forces in the lower 
and upper fibres, respectively. They can be written in 
the form 

F 1 ~-- 

= 

where 

and 

A 

B 

C 

D 

E 

F 

R - R/Q 

R/ (  O + 1) 

0 

0 

R/(O + 1) 

0 

(48) 

The matrix Equation 48 can be solved numerically. 
The relative fibre displacement at the crack can be 

evaluated by 

1 dFj ~=o (49) 
a - q/n: dx 

A now being negative because the fibre moves to the 
left. 

{ Ae ~x + Be - ~  + R/O, 

Ce -~I~ + De xlx + Ee -x~x + Fe )~>~ + R/(Q + t), 

0, 

0, 
- C e  -~'~ - De ~'~ + Ee -~'~ + Fe ~:' + R / (  O + 1), 

Ge ~ + He  -zx + R/Q, 

= ( / ~ 0 )  1/2 (40)  

R = P1 - P2 (41) 

The boundary and compatibility conditions are 

FI(0) = R (42) 

F I ( a - )  = f l ( a  +) (43) 

F i ( a - )  = Fi (a  +) (44) 

F~(s) = F2(s) (45) 

F~(s) = - F;(s) (46) 

Fz(a) = 0 (47) 

where s = (a + 1)/2. Note that symmetry conditions 
have been used. The shear stress between the fibre and 

O < < . x < ~ a  

a < x ~< 1 (38) 

l < x < ~ a + l  

O < ~ x < < . a  

a < x ~< 1 (39) 

l < x < ~ a + l  

4. Comparison of single-fibre and 
two-fibre system theories 

To compare the analyses of the single- and two- 
fibre systems, some numerical cases were performed. 
The following material parameters were chosen: fibre 
diameter d = 1 ram, Vf = 5%, Ef = 210 GPa,  
E,, = 21 GPa,  and K = 1.2X 10 t3 N m  -3. The fibre 
forces at the cracks are assumed to be known. 

4.1 Case 1 
Let the segment length between the two cracks be 
l =  30ram, and the fibre forces at the cracks be 
P1 = 100 N and P2 = 0. The distributions of the fibre 
force, interracial shear stress and strain difference 
between the fibre and the matrix are shown in Fig. 4. 
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The solid lines represent the two-fibre system and the 
dashed lines the single-fibre system. For  the 
single fibre system the relative displacement is 
A = 1.027 x 10- 3 mm and for the two-fibre system it is 
A = 1.147 x 10 .3 mm, the relative error being 10.5%. 

From Fig. 4 it can be seen that when the fibre force 
is nearly constant, its value in the single-fibre analysis 
is twice that obtained in the two-fibre system analysis. 
The reason is seen in Fig. 5. In both analyses, the total 
matrix force distributions are equal. The matrix force 
was derived by T ( x )  = P - F1 ( x )  - F 2 ( x ) .  In the two- 
fibre system the fibre force distributions are 
symmetrical, while in a single fibre analysis they are 
not due to the violated boundary conditions. 
Therefore the two-fibre system analysis is believed to 
give more accurate results for the fibre displacement at 
the crack. 

4.2 Case 2 
Let the segment length between the two cracks be 
l =  30mm,  and the fibre forces at the cracks be 
P1 = 100 N and P2 = 70 N. The distributions of the 
fibre force, interfacial shear stress and strain difference 
between the fibre and the matrix are shown in Fig. 6. 
For  the single fibre system the relative displacement is 
A = 1.027 x 10 - 3 mm and for the two-fibre system it is 
A = 1.063 x 10 .3 ram, the relative error being 3.4%. 

4.3 Case 3 
Let the segment length between the two cracks be 
l =  5ram, and the fibre forces at the cracks be 
P1 = 100 N and P= = 0. The distributions of the fibre 
force, interracial shear stress and strain difference 
between the fibre and the matrix are shown in Fig. 7. 
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Figure 4 Distributions of fibre force, interracial shear stress and strain difference between fibre and matrix. Solid lines: two-fibre system; 
dashed lines: single fibre system, l = 30 mm, P1 = 100 N and P= = 0. 

F~ 

u2 

100 

80 

60 

40 

20 

100 

. . . . . . . . . . . . . . .  60 

II l# �9 
, ~\ 40 

0.005 0.01 0.015 0.02 0.025 0.03 

X 

I I I I I 

0.005 0.01 0.015 0.02 0.025 0.03 

X 

Figure 5 Distributions of fibre forces and total matrix force. (a) Single fibre system with two cases separately analysed: P1 = 100 N, P= = 0, 
and P1 = 0, P2 = 100 N. (b) Two-fibre system with P1 = 100 N, P2 = 0. Solid lines: fibre forces; dashed lines: matrix force, l = 30 mm. 
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Figure 6 Distributions of fibre force, interracial shear stress and strain difference between fibre and matrix. Solid lines: two-fibre system; 
dashed lines: single fibre system, l = 30 mm, P1 = 100 N and P2 = 70 N. 
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F o r  the single fibre system the relat ive d i sp lacement  
is A = 1.089 x 10 - 3 m m  and  for the two-f ibre  system it 
is A = 1.224x 1 0 - 3 m m ,  the relat ive er ror  being 

11.0%. 
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4.4 C a s e  4 

Let  the segment  length between the two cracks be 
l =  5 m m ,  and  the fibre forces at the cracks be 
P1 = 100 N and  P2 = 70 N. The d is t r ibu t ions  of  the 



fibre force, interracial shear stress and strain difference 
between the fibre and the matrix are shown in Fig. 8. 
For  the single fibre system the relative displacement is 
A = 0.974 x 10 -3 m m  and for the two-fibre system it is 
A = 1.015 x 10 3 mm, the relative error being 4.0%. 

5. Examples of fibres shorter than the 
segment between cracks 

A two-fibre system is now analysed with the fibres 
partially overlapping within the segment between 
two cracks (Fig. 3(b)). The material parameters  are 
as above. The fibre force at the crack is R = 
P 1 - P 2 =  100N. 

difference between the fibre and the matrix were seen 
to depend on the crack spacing. 

To apply the present theory to real composites, the 
fibre forces at the cracks should be derived from the 
crack widths, which may require an iteration routine. 
Moreover, a theory of debonding fibres in the multiple 
cracking case is still to be developed. 
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5.1 Case 5 
The fibre embedded length is l = 50 mm, and the 
crack spacing is 70 mm, or a = 20 m m  (see Fig. 3). 
The fibre force, shear stress at the interface, and 
strain difference distributions are shown in Fig. 9. 
In Fig. 10 the same quantities are shown at the 
end region of the symmetry fibre. It  can be seen 
that the force distribution in the fibre is nearly 
constant at two intervals, and that the strain difference 
between the fibre and matrix reaches zero three 
times. The relative displacement at the crack is 
A = 1.128 x 10 ~ ram. 

5.2 Case 6 
The fibre embedded length is 1 = 10 mm, and the 
crack spacing is 14 ram, or a = 4 mm (see Fig. 3). The 
fibre force, shear stress at the interface, and strain 
difference distributions are shown in Fig. 11. It can be 
seen that the strain difference reaches zero only in the 
region where the two fibres overlap. The relative 
displacement at the crack is A = 1.134 x 10 -3 ram. 

6. Concluding remarks 
A fibre pull-out problem in the multiple cracking stage 
was studied. Full bonding was assumed. To satisfy the 
equilibrium conditions at the cracks, a symmetry fibre 
was assumed to be located at the adjacent crack 
symmetrically to the fibre being analysed. This 
assumption can be used in the statistical analysis of 
a multiple cracked composite. Analysing the two-fibre 
system leads to more complex formulae than for 
a single fibre system, but equilibrium conditions are 
satisfied. Thus the displacement derived from the 
two-fibre system analysis is believed to be more 
accurate than that obtained from the single fibre 
analysis. 

Compar ing the solutions of the single and two-fibre 
systems showed that the latter gave a greater 
displacement at the crack. The maximum relative 
difference was 11%. 

The most complicated case, in which the two fibres 
partially overlap between the cracks, was analysed 
and two examples were presented. The distributions of 
fibre force, the interracial shear stress, and the strain 

Appendix 1. Notation 
The followin 9 symbols are used in this paper 

Af = area of fibre 
Am = area of matrix 
Ef -- modulus of elasticity of fibre 
E m = modulus of elasticity of matrix 
F ,  F 1 , F  2 = tensile forces in fibres 

K - 
AmEm 

2 A m E m  

1 = fibre embedded length or segment length 
P, P1, P2 = fibre forces at the cracks 

A m E m  
Q - - I + - -  

Af Ef 
2AmEm 

Q = l + - -  
AfEf 

R = P 1 - P 2  

S = slip between fibre and matrix 
T, T1, T2 = tensile forces in matrix 
Vf = fibre volume fraction 
Vm = 1 -- Vf = matrix volume fraction 
A = displacement of fibre free end 
~c = bond modulus 
X = (KQ) 1/2 

k = (~0)112 
~ i  ~- [ / ~ ( 0  - -  1) "11/2 
;% = [/(((~ + 1)] 1/2 

= perimeter of fibre 
z = shear stress between fibre and matrix 
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